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1. Introduction

In general, non-commutative quantum field theories (NCQFT) realized through the Weyl-

Moyal ⋆-product [4], suffer from UV/IR mixing, manifesting itself in the form of IR singu-

larities for vanishing external momenta [5]. Besides the possibility of performing a pertur-

bative expansion in the deformation parameter of non-commutativity (see for example [6 –

8]), another way to get rid of this problem in the U(1) gauge field sector was proposed by

Slavnov [1, 9]. It involves an extension of the gauge invariant action of the following form
∫

d4x
λ

2
⋆ θµνFµν , (1.1)

introducing a new (dynamical) multiplier field λ. The effect of this ”Slavnov term” is

such that the gauge field propagator of NCGFT becomes transversal with respect to k̃µ =

θµνkν , where θµν denotes the deformation parameter of non-commutative 3+1 dimensional

Minkowski space.1 Hence insertions of the (gauge independent) IR singular parts of the

one-loop polarization tensor [12 – 14]

Πµν
IR(k) ∼

k̃µk̃ν

(k̃2)2
, (1.2)

1In order to avoid problems with unitarity of the S-matrix and causality [10, 11], we choose θ0i = 0.
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are initially expected to vanish in higher order loop calculations. Unfortunately, though,

new Feynman rules including the λ-field enter the model leading to new problems and

divergent loop graphs. These new effects were discussed in [15] in great detail for a gauge

fixing which interpolated between a covariant gauge and an axial gauge fixing.

For the case of a θµν of reduced rank it was, however, shown in [2] upon choosing

a special axial gauge (which allows for a gauge dependent linear vector supersymmetry

(VSUSY) similar to the one of the 2-dimensional BF model [16 – 19]) that the IR dangerous

graphs do not yield any contribution, leading to the conclusion that the model is IR finite.

Here, we wish to extend these results to more general θµν , by using a similar approach:

we discuss a slight modification of the Slavnov term in order to incorporate properties of

the 3-dimensional BF model [20 – 22] and again find a gauge in which we can conclude the

absence of IR divergences.

The paper is organized as follows: in section 2 we introduce the (gauge-fixed) action

and find a great number of (gauge-dependent) symmetries, one of which is linear, fermionic

and carries a vector index and which we will hence shortly call vector supersymmetry

(VSUSY). This symmetry enables us in section 3 to essentially repeat the proof presented

in reference [2] leading to the conclusion of IR-finiteness of the model. Finally, in section 4

we discuss the possibility of writing down topological-like terms in higher dimensions and

comment on their consequences.

In order to simplify the notation, we will not spell out the star product symbol in

the sequel: all products between fields (or functionals of fields) are understood to be star

products.

2. The modified Slavnov term and symmetries of the action

2.1 Action

The (gauge-)invariant action for a non-commutative U(1) gauge field, enhanced by the

extension proposed by Slavnov [1], is given by

Sinv =

∫

d4x

[

−
1

4
FµνFµν +

λ

2
θµνFµν

]

, (2.1)

where

Fµν = ∂µAν − ∂νAµ − ig (AµAν − AνAµ) , (2.2)

denotes the field strength of the gauge connection and the signature of space-time is given

by gµν = diag(+,−,−,−). In reference [2] the action (2.1) was interpreted as a topological

2-dimensional BF model coupled to Maxwell theory. The price, however, which had to

be paid for this identification was a restriction of the (matrix-valued) parameter of non-

commutativity to the special form,

θµν ∼











0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0











, (2.3)
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which made it possible to write the Slavnov term as λ
2 ǫabFab with a, b ∈ {1, 2}. In this

section, however, we propose a possibility to consider a more general θµν without spoiling

the topological nature of the theory. To this end we take θµν to be completely arbitrary,

at least in its spatial components,2

θµν =











0 0 0 0

0 0 θ12 θ13

0 −θ12 0 θ23

0 −θ13 −θ23 0











, (2.4)

and remember that the Slavnov term was originally designed to introduce the following

constraint on the field strength:

θ12F12 + θ13F13 + θ23F23 = 0. (2.5)

We now impose the more restrictive constraint that each of the three terms vanishes by

itself and implement this with the help of three multiplier fields Ui(x) with i ∈ {1, 2, 3} in

the following way:
∫

d4x

[

−
1

4
FµνFµν + U3θ

12F12 + U2θ
13F13 + U1θ

23F23

]

. (2.6)

Upon introducing the rescaled fields

λ1 ≡ θ23U1, λ2 ≡ −θ13U2, λ3 ≡ θ12U3, (2.7)

the invariant action can be rewritten in the form

Sinv =

∫

d4x

[

−
1

4
FµνFµν +

1

2
ǫijkFijλk

]

, (2.8)

which is analogous to a 3-dimensional BF model coupled to Maxwell theory. Greek indices

µ, ν, ρ, σ take the values 0, 1, 2, 3 while Latin indices only denote the spatial directions

i, j, k, l ∈ {1, 2, 3}. In fact, this action is invariant under two gauge symmetries. The first

one is given by

δg1Aµ = DµΛ,

δg1λk = −ig[λk,Λ], (2.9)

and the second gauge symmetry reads

δg2Aµ = 0,

δg2λk = DkΛ
′, (2.10)

where Λ, Λ′ are gauge parameters. The covariant derivative Dµ is defined as

Dµ· = ∂µ · −ig [Aµ, ·] . (2.11)

2We assume the spatial coordinates commute with time in order to avoid various conceptional problems,

as already mentioned.
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Aµ λk B d c c̄ φ φ̄

dimension 1 2 3 2 0 3 1 2

φπ-charge 0 0 0 0 1 -1 1 -1

Table 1: Canonical dimensions and ghost numbers of fields

Observe, that Λ′ is a scalar and hence this model does not contain any so-called zero-

modes, which are typical for n ≥ 4-dimensional BF models (where Λ′ would be a (n − 3)-

form, cf. [23, 22]). For the gauge fixing procedure we assume, that the algebra of fields is

graded by the ghost-number and, accordingly, all commutators are considered to be graded

with respect to this degree, e.g. 1
2 [c, c] stands for 1

2 {c
⋆, c} = c ⋆ c and [Aµ, c] stands for

[Aµ
⋆, c] = Aµ ⋆ c − c ⋆ Aµ. At this point we would also like to draw attention to the fact

that the deformation parameter θµν does not appear explicitly in the Slavnov term of the

action (2.8) (apart from its appearance in the star-products, of course). Therefore, it will

make no difference which explicit form is chosen for θµν in the upcoming considerations

(i.e. we are free to chose any value for the entries θ12, θ13 and θ23 in (2.4)). The only

restriction we need to take into account is that θ0µ = 0 for reasons already mentioned.

We now continue by adding gauge fixing terms to our model in a BRST invariant way.

To this end we fix both gauge symmetries using axial gauges following [20]:

S =

∫

d4x

{

−
1

4
FµνFµν +

1

2
ǫijkFijλk + BniAi + dmiλi − c̄niDic

− φ̄mi
(

Diφ − ig [λi, c]
)}

. (2.12)

The multiplier fields B and d implement axial gauge fixings for the gauge symmetries (2.9)

and (2.10), respectively. Both gauge fixings are chosen to be space-like (n0 = m0 = 0) which

we will find necessary in order to make the action invariant under a vector supersymmetry

in the 3-dimensional subspace, as we will show in the next subsection. The remaining terms

in (2.12) denote the ghost part of the action introducing the ghosts/antighosts c, c̄, φ, φ̄.

The canonical dimensions and ghost numbers for the various fields are summarized in

table 1.

Before we discuss the symmetries of the action (2.12), let us consider the following: it is

well-known in the literature (see e.g. [24] for a review), that axial gauge fixings render gauge

theories “ghost-free”, i.e. appropriate redefinitions of the multiplier fields implementing the

gauge fixing lead to a decoupling of the ghost fields from the gauge fields. However, for

us it will turn out to be convenient to merely decouple the ghosts from each other and

choose nk = mk, as this will render the action invariant with respect to a linear vector

supersymmetry. The necessary field redefinition is

d → d′ = d − ig
[

φ̄, c
]

. (2.13)

Hence, the action we will continue to work with is given by

S =

∫

d4x

{

−
1

4
FµνFµν +

1

2
ǫijkFijλk + BniAi + d′miλi − c̄niDic − φ̄miDiφ

}

, (2.14)

with nk = mk.
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2.2 BRST & VSUSY

The action (2.14) is invariant under the following BRST transformations, as can be easily

verified:

sAµ = Dµc, sλi = Diφ − ig [λi, c] ,

sc =
ig

2
[c, c] , sφ = ig [φ, c] ,

sc̄ = B, sφ̄ = d′ + ig
[

φ̄, c
]

,

sB = 0, sd′ = −ig
[

d′, c
]

,

s2ϕ = 0, for ϕ ∈ {Aµ, λ,B, d′, c, c̄, φ, φ̄}. (2.15)

The reason why φ̄ and d′ do not form a BRST-doublet similar to c̄ and B lies in the

field-redefinition d′ = d − ig
[

φ̄, c
]

. However, this will be of no harm to us.

Furthermore, as already alluded to, the action is also invariant under the following

fermionic symmetry

δiAµ = 0, δiλj = −ǫijkn
kc̄,

δic = Ai, δiφ = 0,

δic̄ = 0, δiφ̄ = 0,

δiB = ∂ic̄, δid
′ = 0,

δiδjϕ = δ0ϕ = 0, for ϕ ∈ {Aµ, λ,B, d′, c, c̄, φ, φ̄}, (2.16)

provided nk = mk. Besides the fact that the operator for this symmetry carries a space-

time index, it is crucial to notice that it is a linear symmetry. In order to make contact

with [2] as well as with the (non-commutative) 3-dimensional BF model, we will hence

refer to (2.16) as vector supersymmetry or VSUSY for short. The reason for the fact

that the symmetry has a different form from the familiar one of BF models is obviously

the presence of the FµνFµν-term in the action (2.14) — and of course the fact that we

are dealing with 3 + 1 dimensional space-time. As already anticipated, linearity of this

symmetry was achieved through the field-redefinition d′ = d − ig
[

φ̄, c
]

, while the initial

multiplier field d would have transformed non-linearly under VSUSY. However, linearity

of the VSUSY will turn out to be crucial for our considerations.

The invariance of the action functional (2.14) under the VSUSY-transformations (2.16)

is described by the Ward identity

WiS ≡

∫

d4x

(

∂ic̄
δS

δB
+ Ai

δS

δc
+ ǫijkn

j c̄
δS

δλk

)

= 0, (2.17)

which will play an important role when considering loop corrections (cf. section 3).

As we have seen, the VSUSY depends crucially on our choice of gauge. Moreover,

the interplay of the form of θµν (as given by equation (2.4)) together with the space-like

nature of the chosen gauge vector gives rise to even more symmetries as we are about to

show right now. Let us take a look at the algebra satisfied by the BRST symmetry and
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the VSUSY: from relations (2.15) and (2.16) it follows that3

[s, s]ϕ = [δi, δj ] ϕ = 0, for ϕ = {Aµ, λj , B, d′, c, c̄, φ, φ̄}, (2.18a)

[s, δi]Aj = ∂iAj − ǫijk
δS

δλk

+ δ̂iAj , (2.18b)

[s, δi]A0 = ∂iA0 + δ̂iA0, (2.18c)

[s, δi] c = ∂ic, (2.18d)

[s, δi] c̄ = ∂ic̄, (2.18e)

[s, δi]B = ∂iB, (2.18f)

[s, δi]λj = ∂iλj − ǫijk
δS

δAk

− Di
δS

δλj
+ δ̂iλj , (2.18g)

[s, δi] d
′ = ∂id

′ + δ̂id
′, (2.18h)

[s, δi] φ = ∂iφ + δ̂iφ, (2.18i)

[s, δi] φ̄ = ∂iφ̄ + δ̂iφ̄, (2.18j)

implying a new bosonic vectorial symmetry of the action (2.14) whose action on the fields

is given by the transformation laws

δ̂iAj = ǫijkn
kd′ ,

δ̂iA0 = −Fi0 ,

δ̂iλj = ǫijkD0F
0k − Djλi +

1

2
ǫlmiDjF

lm + njDid
′ − igǫijkn

k
[

φ̄, φ
]

,

δ̂id
′ = −Did

′ ,

δ̂iφ = −Diφ ,

δ̂iφ̄ = −Diφ̄ ,

δ̂0ϕ = 0, for all fields ϕ. (2.19)

From the right hand side of (2.18) we already see that the algebra of symmetries can

only close on-shell. Apart from the new symmetry (2.19) we also notice that the space

translations ∂i appear.

2.3 Differences compared to the 2 dimensional BF-type Slavnov term

In reference [2] it was shown that the algebra of BRST, VSUSY, the vectorial bosonic

symmetry and translation symmetry closes on-shell for non-commutative Maxwell theory

with a Slavnov term resembling the 2 dimensional BF model. Here, however, things are

slightly more complicated:

Computing further commutators, we readily find that

[

s, δ̂i

]

ϕ = 0, (2.20)

3The equations of motion are displayed in appendix A.
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for all fields. However, in trying to work out the complete symmetry algebra, one encounters

more symmetries, e.g.

[

δi, δ̂j

]

λk = ǫijln
lDk c̄ ,

[

δi, δ̂j

]

c = δ̂iAj ,
[

δi, δ̂j

]

ϕ = 0, for all other fields ϕ . (2.21)

The right hand sides of these expressions represent new symmetry transformations of the

action (2.14), as can be easily checked. Similarly one obtains

[

δ̂i, δ̂j

]

ϕ = further symmetry transf. of ϕ . (2.22)

In fact, computation of even more commutators between the new symmetries reveals numer-

ous further ones which, however, shall not be discussed here. We are primarily interested

in the linear vector supersymmetry denoted by δi and will discuss its consequences in the

next section.

But first we would like to draw attention to an interesting feature of the new bosonic

vectorial symmetry (2.19): inspired by its pendant in [2], which was a symmetry of the

gauge invariant action, we easily find the corresponding symmetry for the gauge invariant

action (2.8) in our present model:

δ̂
(1a)
i Aj = 0,

δ̂
(1a)
i A0 = −Fi0

δ̂
(1a)
i λj = ǫijkD0F

0k. (2.23)

In contrast to the situation in [2], the gauge fixing of (2.14) breaks this symmetry. Instead

(due to our space-like axial gauge fixing) it is replaced by4

δ̂
(1)
i Aj = ǫijkn

kd′,

δ̂
(1)
i A0 = −Fi0

δ̂
(1)
i λj = ǫijkD0F

0k − Djλi +
1

2
ǫlmiDjF

lm + njDid
′,

δ̂
(1)
i d′ = −Did

′,

δ̂
(1)
i ϕ = 0, for ϕ ∈ {B, c, c̄, φ, φ̄}. (2.24)

It is further amusing to see that the transformations δ̂
(1b)
i λj = −Djλi and δ̂

(1c)
i λj =

1
2ǫlmiDjF

lm leave the gauge invariant action (2.8) invariant as well. In fact, looking at

δ̂
(1b)
i λj one is strongly reminded of the second gauge symmetry (2.10). The remaining field

4Notice, that the replacement (2.24) is not unique: the gauge fixed action (2.14) is also invariant under

δ̂′iλj = δijn
kDkd′ + 1

2
ǫlmiDjF

lm (where δ̂′iϕ = 0 for all other fields ϕ) and hence (2.24) might as well be

replaced by an arbitrary linear combination of both, e.g. δ̂
(1)
i → δ̂

(1)
i − δ̂′i.

– 7 –
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transformations of (2.19) form another symmetry5 of the gauge fixed action (2.14) which

does not involve the gauge field Aµ:

δ̂
(2)
i λj = −igǫijkn

k
[

φ̄, φ
]

,

δ̂
(2)
i φ = −Diφ,

δ̂
(2)
i φ̄ = −Diφ̄,

δ̂
(2)
i ϕ = 0, for ϕ ∈ {Aµ, c, c̄, B, d′} . (2.25)

So in contrast to the simpler model of non-commutative Maxwell theory with a Slavnov

term resembling the 2 dimensional BF model, the right hand sides of the commutators

[s, δi] reveal a linear combination of two symmetries (δ̂i = δ̂
(1)
i + δ̂

(2)
i ), one of which is a

modified version of (2.23) due to gauge fixing, namely (2.24). Furthermore, the algebra

does not close immediately, but instead, many additional symmetries appear.

In conclusion of this subsection: the appearance of an additional bosonic vectorial

symmetry of the gauge invariant action seems to be typical for Yang Mills theories with a

BF-type Slavnov term. However, its survival after gauge fixing is in general not compatible

with the existence of a linear VSUSY.

3. Consequences of the vector supersymmetry

The generating functional Zc of the connected Green functions is given by the Legendre

transform of the generating functional Γ of the one-particle irreducible Green functions

Zc = Γ +

∫

d4x
(

j
µ
AAµ + jBB + ji

λλi + jd′d
′ + jcc + jc̄c̄ + jφφ + jφ̄φ̄

)

, (3.1)

where in the classical approximation Γ essentially equals the action S. This leads to the

usual relations

δZc

δj
µ
A

= Aµ,
δZc

δjB
= B,

δZc

δj
j
λ

= λj,
δZc

δjd′
= d′,

δZc

δjc
= c,

δZc

δjc̄
= c̄,

δZc

δjφ
= φ,

δZc

δjφ̄

= φ̄,

δΓ

δAµ
= −j

µ
A,

δΓ

δB
= −jB ,

δΓ

δλj
= −j

j
λ,

δΓ

δd′
= −jd′ ,

δΓ

δc
= jc,

δΓ

δc̄
= jc̄,

δΓ

δφ
= jφ,

δΓ

δφ̄
= jφ̄. (3.2)

In the tree graph approximation the Ward identity (2.17) describing the linear vector

supersymmetry in terms of Zc is given by

WiZ
c =

∫

d4x

[

jB∂i
δZc

δjc̄
− jc

δZc

δji
A

+ ǫijkn
jjk

λ

δZc

δjc̄

]

= 0. (3.3)

5Remember, that the BRST transformations were already made up of two separate symmetries, namely

those corresponding to the two gauge symmetries (2.9) and (2.10).
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Varying (3.3) with respect to the appropriate sources one gets the following relations:

δ2Zc

δji
Aδj

j
λ

∣

∣

∣

∣

j=0

= ǫijkn
k δ2Zc

δjc̄δjc

∣

∣

∣

∣

j=0

, (3.4a)

δ2Zc

δji
Aδjν

A

∣

∣

∣

∣

j=0

= 0 . (3.4b)

Furthermore, one has the gauge fixing conditions (cf. (2.14), mi = ni)

−jB = ni δZ
c

δji
A

, (3.5a)

−jd′ = ni δZ
c

δji
λ

, (3.5b)

and the (anti)ghost equations

−ni∂i
δZc

δjc̄
− ig

[

jB ,
δZc

δjc̄

]

= jc, −ni∂i
δZc

δjc
− ig

[

jB ,
δZc

δjc

]

= jc̄ , (3.5c)

−ni∂i
δZc

δjφ̄

− ig

[

jB ,
δZc

δjφ̄

]

= jφ, −ni∂i
δZc

δjφ
− ig

[

jB ,
δZc

δjφ

]

= jφ̄ , (3.5d)

from which follow

ni δ2Zc

δjB(y)δji
A(x)

∣

∣

∣

∣

j=0

= −δ4(x − y), (3.6a)

ni δ2Zc

δjd′ (y)δji
λ(x)

∣

∣

∣

∣

j=0

= −δ4(x − y), (3.6b)

ni∂i
δ2Zc

δjc(y)δjc̄(x)

∣

∣

∣

∣

j=0

= −δ4(x − y), (3.6c)

ni∂i
δ2Zc

δjφ(y)δjφ̄(x)

∣

∣

∣

∣

j=0

= −δ4(x − y). (3.6d)

In momentum space, the free propagators of the theory with mi = ni are given by (see

appendix B)

i∆cc̄(k) = −
1

(nk)
, i∆φφ̄(k) = −

1

(nk)
, (3.7a)

i∆AB
i (k) =

iki

(nk)
, i∆d′λ

i (k) =
iki

(nk)
, (3.7b)

i∆λλ
ij (k) =

−k2

~k2

(

gij −
kinj + nikj

(nk)
+ n2 kikj

(nk)2

)

, (3.7c)

i∆Aλ
ij (k) =

−i

~k2

(

ǫiljk
l − ǫilr

klnrkj

(nk)
+ ǫjlr

klnrki

(nk)

)

, (3.7d)

i∆Aλ
i0 (k) =

−i

~k2

(

−ǫilr
klnrk0

(nk)

)

, (3.7e)

i∆AA
00 (k) = −

1

k2

(

g00 −
k2
0

~k2

)

=
1

~k2
, i∆AA

ij (k) = i∆AA
i0 (k) = 0, (3.7f)
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and one easily sees that the relations (3.4) and (3.6) hold.6 Furthermore, by virtue of

equation (3.7f) and θµ0 = 0, the gauge field propagator is still transverse with respect to

k̃µ ≡ θµνk
ν despite the modification of the Slavnov term (cf. (1.1) and (2.14)).

Finally, the vector supersymmetry leads to the following nice features for loop calcu-

lations: obviously, the combination of the λA-vertex V λA
ijk ∝ ǫijk with a gauge field prop-

agator ∆AA
µν is always zero (see eq. (3.4b)). But since it is impossible to have λA-vertices

in arbitrary loop graphs (except for tree graphs) unless some of them couple to gauge field

propagators [2], such graphs will not contribute to any quantum corrections. Hence, neither

the λ-vertex nor the λ/λA-propagators contribute to the gauge field self-energy corrections

at any loop-order! In union with the transversality condition of the gauge field propagator,

it therefore follows that no IR divergences from 1-loop graph insertions are passed on to

higher loop orders.

Note, that we have only discussed the IR behaviour of our model and the UV sector,

especially the planar graphs, remain to be thoroughly analyzed. Due to the VSUSY the

λ-field does not play a role in the UV sector either and therefore we do not expect any

major problems. Still one needs to take care when computing the Feynman graphs due to

the axial gauge fixing, i.e. an appropriate prescription for the (nk)−1 poles is needed (see

for example [25] and references therein).

4. Generalization to arbitrary dimensions

4.1 Re-interpretation of the action

In section 2.1, we modified the original Slavnov term proposed in [1, 9] by changing

the scalar field λ into a set of fields λi, labelled by an index corresponding to the non-

commutative subsector of space-time. In order to show that the Slavnov trick works we

have taken a rather pragmatic point of view and have not inquired further about the

true nature of λi. In fact an intriguing observation can be made when returning to the

action (2.14) and explicitly writing out the field strength Fµν in the Slavnov term:

S =

∫

d4x

{

−
1

4
FµνFµν + ǫijkλi∂jAk − igǫijkλiAjAk + BniAi + d′miλi−

− c̄niDic − φ̄miDiφ

}

. (4.1)

Written in this way, the generalized Slavnov term has certain similarities with a Chern-

Simons type term if λi is interpreted as a second gauge field. In order to make this

observation even more striking, we rescale the fields according to

λi ≡ µλ′
i, d′ ≡

d′′

µ
, (4.2)

6k̃2 = −(k2
1+k2

2), (nk) = −(n1k1+n2k2), (nk̃) = (n1k2−n2k1), and similarly for ni
↔ mi. Furthermore,

i∆ϕ1ϕ2(x − y) = −i δ2Zc

δjϕ1
(x)δjϕ2

(y)

˛

˛

˛

j=0
for all fields ϕ.
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Aµ λ′
k B d′′ c c̄ φ′ φ̄′

dimension 1 1 3 3 0 3 0 3

φπ-charge 0 0 0 0 1 -1 1 -1

Table 2: Canonical dimensions and ghost numbers of redefined fields

where µ is a constant with mass dimension 1. For the action, we then find

S =

∫

d4x

{

−
1

4
FµνFµν + µǫijkλ′

i∂jAk − igµǫijkλ′
iAjAk + BniAi + d′′miλ′

i−

− c̄niDic − φ̄′miDiφ
′

}

. (4.3)

Note, that φ′ and φ̄′ differ from φ and φ̄ by their canonical dimension, which can be seen

from table 2.

Thus the two sets of fields (Aµ, B, c, c̄) and (λ′
i, d

′′, φ′, φ̄′) not only appear in a rather

similar way in the action, but also their canonical dimensions match precisely. This pro-

vides some evidence that (λ′
i, d

′′, φ′, φ̄′) should really be interpreted as another gauge field

together with a second ghost system. In addition to the classical dynamics a striking dif-

ference is the absence of a λ′
0 component. Indeed, λ′

i has only components corresponding

to potentially non-commutative directions. As we will see, this is a general feature when

considering similar examples in a different number of dimensions, as we will do in the next

section.

4.2 Topological terms in higher dimensions

In reference [2] it was shown that the interpretation of the Slavnov-term as a topological-

type term (resembling a 2 dimensional BF model) is fruitful in studying the fate of the

IR divergences in more detail. Also in section 3, we have encountered that modifying the

Slavnov term to resemble a 3 dimensional BF model teaches us interesting lessons in this

respect. In doing so, however, we had to add an index to the λ field, which (as we have just

seen) allows for interpreting it in terms of a gauge field. It is expected that increasing the

dimension of the non-commutative subspace (which necessarily also involves increasing the

dimension of space-time) will lead to objects with yet more indices whose interpretations

remain to be seen. Therefore, besides being interesting in its own right, we might learn a

good deal about λ (whatever its “form degree” might be), by introducing Slavnov terms in

higher dimensions, which can again be interpreted as being topological in the same sense

as before.

To this end, consider a D > 2 dimensional space-time M, which we write as the

product of a (D − n)-dimensional Minkowski space and a n-dimensional non-commutative

Euclidean space

M = MD−n × R
NC
n . (4.4)

We restrict n to be 2 ≤ n < D, since we want to have at least two non-commutative

dimensions and we furthermore want to interpret one dimension as time. In accordance
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with section 2, space-time indices of the whole M are denoted by Greek letters, µ, ν ∈

{0, 1, . . . ,D− 1}, while the non-commutative directions are labelled by Latin indices i, j ∈

{D − n, . . . ,D − 1}. In this setup, the analog to the constraint (2.5) is a sum of n(n−1)
2

terms and in the following we will impose the stronger demand that each of them vanishes

separately. Let us consider this in somewhat more detail:

• D = 3 : In this simplest case, the only possibility is to choose n = 2, which renders

θµν of the form

θµν =







0 0 0

0 0 θ

0 −θ 0






, with θ 6= 0. (4.5)

The transversality constraint (2.5) consists of a single term

θF12 = 0, (4.6)

which is implemented in the action by a scalar field λ:
∫

d3xλθµνFµν =

∫

d3xλθǫijFij . (4.7)

• D = 4 : Here there are two possibilities for n, namely 2 and 3, as can be seen in the

following table

n θµν constraints λ-field action term

2











0 0 0 0

0 0 0 0

0 0 0 θ

0 0 −θ 0











F23 = 0 λ

∫

d4xλθµνFµν ∝

∝

∫

d4xλǫijFij

3











0 0 0 0

0 0 θ12 θ13

0 −θ12 0 θ23

0 −θ13 −θ23 0











θ12F12 = 0

θ13F13 = 0

θ23F23 = 0

λi

∫

d4xǫijkFijλk

where θij 6= 0 for all i 6= j. In the case n = 2 (which is essentially the one studied

in [2]), λ is obviously a scalar once more, while for n = 3, λi enjoys the interpretation

as a vector field with components only in the R
NC
3 , as we have already pointed out.7

• Generic D: From the two previous examples, we can easily generalize the case of

generic D and n: let us again start out with the most generic θµν

θµν =

(

0

θij

)

, (4.8)

7In general, the number of Lagrange multipliers λi might as well be greater than the number of non-

vanishing θij . However, in this section we are primarily interested in the case where they are equal.
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with θij 6= 0 for all i 6= j. The Slavnov constraint one has to impose on this model

reads

θijFij = 0, with D − n ≤ i < j ≤ D − 1, (4.9)

and the stronger constraints, where each term in the sum is zero, are implemented

with the help of n(n−1)
2 Lagrange multipliers, which can be arranged into a field

λi1...in−2 which is totally antisymmetric in all its indices. The corresponding action

term is of the form

∫

dDxǫijk1...kn−2Fijλk1...kn−2 , (4.10)

resembling a n dimensional BF model (see e.g. [22, 23, 26]). Note, that the field

λi1...in−2 has a convenient interpretation as a (n−2) form which only has components

in R
NC
n .

We would, however, like to stress the following points:

• although we started with the parameter matrix of non-commutativity (4.8) with

θij 6= 0 for all i 6= j to give the Slavnov constraint a suggestive form, the action

term (4.10) is in principle valid for any choice of the θij,

• we choose the maximum number of constraints compatible with the Slavnov trick.

Before closing this subsection, let us comment on a special case where we set some

of the θij = 0 in (4.8) in a rather peculiar way and see if we find alternatives to the

constraints (4.10) resembling topological terms. We hence consider the matrix θµν having

the block-diagonal structure

θµν =













0D−n

θn1

. . .

θnp













, with

p
∑

a=1

na = n, (4.11)

where 0D−n stands for a (D−n)×(D−n) square matrix with 0 entries everywhere, and θna

are antisymmetric na × na matrices (with 2 ≤ na ≤ n) with non-zero off-diagonal entries.

In other words, we consider a space with p non-commutative subspaces, which, however,

commute among each other.

If we now label the indices of the a-th non-commutative block8 by i(a), we can impose

8They take values D − n − 1 +
Pa−1

b=1 nb < i(a) < D − n +
Pa

b=1 nb.
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the following set of (alternative) constraints

θi
(1)
1 i

(1)
2 F

i
(1)
1 i

(1)
2

= 0, with D − n − 1 < i
(1)
1 < i

(1)
2 < D − n + n1 ,

...

θi
(a)
1 i

(a)
2 F

i
(a)
1 i

(a)
2

= 0, with D − n − 1 +

a−1
∑

b=1

nb < i
(a)
1 < i

(a)
2 < D − n +

a
∑

b=1

nb ,

...

θi
(p)
1 i

(p)
2 F

i
(p)
1 i

(p)
2

= 0, with D − n − 1 +

p−1
∑

b=1

nb < i
(p)
1 < i

(p)
2 < D − n +

p
∑

b=1

nb , (4.12)

where we suspended summation over repeated indices. These constraints suggest to con-

sider the following term in the action
p

∑

a=1

∫

dDxǫi
(a)
1 ...i

(a)
na λ

(a)

i
(a)
1 ...i

(a)
na−2

F
i
(a)
na−1,i

(a)
na

, (4.13)

which can be interpreted as a sum of na dimensional BF terms and the λ
(a)

i
(a)
1 ...i

(a)
na−2

can be

identified as (na − 2) forms with components in the a-th non-commutative subspace. The

symbol ǫi
(a)
1 ...i

(a)
na is defined similarly to the Levi-Civita symbol, i.e. it is +1 (−1) for even

(odd) permutations of its indices. The only difference here is that the range of the indices

i
(a)
l is given by (4.12) rather than being 1, . . . , na.

It is also important to stress that the superscript “(a)” of the λ
(a)

i
(a)
1 ...i

(a)
na−2

is not an

index but only a label for the various multiplier fields.

4.3 Generalized Slavnov terms and VSUSY

After having gained some intuitive understanding of the nature of the λ field and having

generalized the actions considered in [2] as well as in section 2, we might now ask which

further notions we are able to generalize to higher dimensions. One interesting point is

what happens to the VSUSY in higher dimensions.

We have seen that the action (2.14) is invariant under the vector supersymmetry de-

scribed by (2.17). On the other hand, if one replaces the gauge invariant part of (2.14)

with (2.1) and (2.4), hence implementing the weaker Slavnov constraint (2.5), one cannot

find VSUSY. A first step is therefore to make clear, if we can find a gauge fixing, so that an

action including Slavnov terms of the form (4.13) becomes invariant under a vector super-

symmetry. From all we know so far, such a gauge fixing has to be of an axial type. Let us

consider a simple example, namely (D = 5, n = 4) and a parameter of non-commutativity

of the form

θµν =















0 0 0 0 0

0 0 θ1 0 0

0 −θ1 0 0 0

0 0 0 0 θ2

0 0 0 −θ2 0















, (4.14)
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and the following (gauge fixed) action

S =

∫

d5x

(

−
1

4
FµνFµν +

λ(1)

2
ǫi(1)j(1)

Fi(1)j(1) +
λ(2)

2
ǫi(2)j(2)

Fi(2)j(2) + BnµAµ − c̄nµDµc

)

.

(4.15)

We choose nµ to only have spatial components (n0 = 0). The action is BRST invariant

with

sλ(1,2) = −ig
[

λ(1,2), c
]

,

and the transformations of the other fields given by (2.15). Since the two Slavnov terms

represent 2-dimensional BF terms in the x1, x2-plane and the x3, x4-plane respectively, one

could näıvely assume invariance of the action under the following VSUSY transformations:

δµAν = δµc̄ = 0, δi(1)λ
(1) = ǫi(1)j(1)n

j(1)
c̄,

δi(1)c = Ai(1) , δi(2)λ
(1) = 0,

δi(2)c = Ai(2) , δi(1)λ
(2) = 0,

δi(1)B = ∂i(1) c̄, δi(2)λ
(2) = ǫi(2)j(2)n

j(2)
c̄,

δi(2)B = ∂i(2) c̄, δ0ϕ = 0 for all fields. (4.16)

However, direct calculations show that

δi(1)S =

∫

d5x
(

c̄nj(2)
Fj(2)i(1)

)

6= 0,

δi(2)S =

∫

d5x
(

c̄nj(1)
Fj(1)i(2)

)

6= 0. (4.17)

So obviously, we have invariance under δi(1) if we choose nj(2)
= 0 or invariance under δi(2)

if we choose nj(1)
= 0 but never under both. For higher dimensional models with arbitrary

Slavnov terms of the type (4.13) it therefore makes sense to assume that, depending on

the choice of the axial gauge fixing vector nµ, one can at most have invariance under a

vector supersymmetry whose operator acts non-trivially only in one of the na-dimensional

subspaces corresponding to the a-th BF term.

In fact, the transformations for VSUSY in the a-th non-commutative subspace (i.e.

the a-th summand in equation (4.13)) of an arbitrary dimensional BF-Slavnov model are

always the same, namely the only non-trivial transformations are9

δi(a)c = Ai(a) , δi(a)λ
(a)

j
(a)
1 ···j

(a)
na−2

= ǫ
i(a)k(a)j

(a)
1 ···j

(a)
na−2

nk(a)
c̄,

δi(a)B = ∂i(a) c̄, (4.18)

with the range of indices given in (4.12). For the sake of clarity we will drop the superscripts

“(a)” in the following and keep in mind that we are referring to the a-th BF term. The

9This of course includes the case p = 1 in (4.13).
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linear VSUSY (4.18) exists only after appropriate redefinition of the multiplier fields fixing

the gauge symmetries: let the collection of 2(na − 2) fields
{

φ, φj1 , φj1j2, . . . , φj1...jna−3

}

,
{

φ̄, φ̄j1 , φ̄j1j2, . . . , φ̄j1...jna−3

}

, (4.19)

be the tower of ghosts10 we need to introduce. For na = 2 no ghosts are needed since λ is

a scalar in that case. Furthermore, let the na − 2 objects
{

d, dj1 , . . . , dj1...jna−3

}

(4.20)

be Lagrange multipliers fixing the gauge freedom of11

{

λj1...jna−2 , φj1, . . . , φj1...jna−3

}

. (4.21)

In order to have a linear VSUSY we must redefine the multipliers d according to

d′ = d − ig
[

φ̄, c
]

,

d′j1...jma
= dj1...jma

− ig
[

φ̄j1...jma
, c

]

, ∀ 1 ≤ ma ≤ na − 3. (4.22)

leading to the BRST transformations12

sφ̄ = d′ + ig
[

φ̄, c
]

,

sφ̄j1...jma
= d′j1...jma

+ ig
[

φ̄j1...jma
, c

]

, ∀ 1 ≤ ma ≤ na − 3,

sd′ = −ig
[

d′, c
]

,

sd′j1...jma
= −ig

[

d′j1...jma
, c

]

, ∀ 1 ≤ ma ≤ na − 3. (4.23)

We should also stress that the vector supersymmetry operator (4.18) acts non-trivially only

on the a-th Slavnov term and the gauge fixing part for the gauge field Ai of the action,

provided, of course, its axial gauge fixing vector is chosen to be non-zero only in the na

dimensional subspace where it is identical to the axial gauge fixing vector for λ
(a)
j1···jna−2

.

Obviously, we would not completely loose VSUSY if we wrote the gauge fixing part of

the action in terms of d rather than d′, but the VSUSY would become non-linear, e.g. the

following non-linear VSUSY transformations would have to be added to (4.18):

δid = ig
[

Ai, φ̄
]

,

δidj1...jma
= ig

[

Ai, φ̄j1...jma

]

, ∀ 1 ≤ ma ≤ na − 3, (4.24)

for all Lagrange multipliers.

An important point to mention, however, is that the presence of a linear vector super-

symmetry alone is not sufficient to guarantee the complete absence of all IR divergences

in the loop calculations. In fact, since we have found the VSUSY to act non-trivially only

in a certain subspace of the non-commutative space, the argument at the end of section 3

cannot be applied here which means we are not able to prove IR finiteness of the model in

this way.

10See for example [22, 23, 26] and references therein.
11There is no gauge freedom for the scalar φ.
12Concerning the BRST transformations for the other fields we refer to the literature [22, 23, 26] once

again.
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5. Conclusions

Inspired by recent results concerning Slavnov-extended gauge theories [2], we discussed a

step by step generalization of the Slavnov term. In sections 2 and 3 we considered the

more restrictive version (2.8) of the Slavnov term resembling a 3 dimensional BF model.

We found numerous new symmetries of the gauge fixed action, one of which is (2.16), a

linear vector supersymmetry (VSUSY) which (although it is gauge dependent and hence

non-physical) allowed us to show that the model is free of quadratic IR divergences.

Section 4 was then dedicated to possible generalizations to higher dimensional space-

times of the form (4.4). We could show that in a specific setup the λ field in higher

dimensions can be interpreted as an n−2 form with only components in the n-dimensional

non-commutative subspace of space-time. We furthermore discussed various other possi-

bilities of implementing the Slavnov constraint(s) and also gave one version which (upon

choosing an appropriate gauge fixing) features the existence of a vector supersymmetry.

However, in the general D-dimensional case this is not sufficient to show IR finiteness of

the model.
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A. Equations of motion

The equations of motion associated to the action (2.14) are given by:

δS

δc
= −niDic̄ ,

δS

δc̄
= −niDic , (A.1a)

δS

δφ
= −miDiφ̄ ,

δS

δφ̄
= −miDiφ , (A.1b)

δS

δB
= niAi ,

δS

δd′
= miλi , (A.1c)

δS

δAi
= DµFµi + ǫijkDjλk + ni (B − ig [c̄, c]) − igmi

[

φ̄, φ
]

, (A.1d)

δS

δA0
= DkF

k0 ,
δS

δλi
=

1

2
ǫijkFjk + mid′ . (A.1e)

Note, that the symmetries discussed in section 2.2 only exist if mi = ni.
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B. Propagators

The equations of motion associated to the bilinear part of the action (2.14) including

sources (and for now neglecting the ghosts) read:

δSbi

δAµ
= ¤Aµ − ∂µ(∂A) + δi

µǫijk∂
jλk + nµB = −jA

µ , (B.1a)

δSbi

δλi
= ǫijk∂

jAk + mid
′ = −jλ

i , (B.1b)

δSbi

δB
= (nA) = −jB , (B.1c)

δSbi

δd′
= (mλ) = −jd′ . (B.1d)

By letting ∂µ (and ∂i) act on relations (B.1a) and (B.1b), respectively, one gets

B = −
(∂jA)

(n∂)
, (B.2)

d′ = −
(∂jλ)

(m∂)
. (B.3)

Application of ǫilm∂m to (B.1a) then yields13

−¤jλ
l + ¤

(∂jλ)

(m∂)
ml + ∂l(∂λ) − ∆λl − ǫlmi∂

mni (∂jA)

(n∂)
= −ǫlmi∂

mji
A, (B.4)

where equations (B.1b), (B.2) and (B.3) were inserted. Multiplying this expression with ml

and using (B.1d) provides an expression for (∂λ) and after reinserting the latter into (B.4)

one finds

λl =
¤

∆

(

−jλ
l +

(∂jλ)

(m∂)
ml

)

+
1

∆
ǫlki∂

k

(

ji
A − ni (∂jA)

(n∂)

)

+

+
∂l

(m∂)

[

¤

∆

(

(mjλ) − m2 (∂jλ)

(m∂)

)

− jd′ +
1

∆
ǫijkm

i∂j

(

(∂jA)

(n∂)
nk − jk

A

)]

. (B.5)

Finally, multiplication of (B.1a) with ni and use of equations (B.1c), (B.2) and (B.5)

provides an expression for (∂A) and after reinserting the latter into (B.1a) one finds

Ai =
1

¤

{

− jA
i +

∂i

(n∂)

(

ǫjkln
j∂kλl − ¤jB − n2 (∂jA)

(n∂)
+ (njA)

)

+
(∂jA)

(n∂)
ni − ǫijl∂

jλl

}

,

(B.6)

where λl is given by (B.5). The expression for A0 is similar to (B.6), except for the fact

that the last two terms are missing.

By varying equations (B.2), (B.3), (B.5) and (B.6) with respect to the sources and

passing over to momentum space one obtains the propagators given in equations (3.7).

13In this context ∆ ≡ ∂i∂i = ¤ − ∂0∂0.
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